

全散乱解析(TXS)プラグインの紹介

1. はじめに

Li-ion 電池の正極材^{(1),(2)},固体電解質⁽³⁾⁻⁽⁵⁾,負極 材^{(6),(7)}や強誘電体(BaTiO₃)⁽⁸⁾⁻⁽¹⁰⁾など、様々な材料の 機能の発現には局所構造が重要であることはよく知ら れています. 局所構造の評価手法の1つとしてPDF解 析が注目されています. これは測定した全散乱(Total X-ray Scattering, TXS) データから試料由来の干渉性散 乱強度のみを抽出後、フーリエ変換によって2体分布 関数PDF(G(r))を算出する解析法のことです. 多く のPDF解析は実測値から得られた $G_{obs}(r)$ と結晶構造 モデルと多くのパラメーター(例えば broadening factor や damping factor など)を使って計算された $G_{calc}(r)$ が Gobs(r)をどの程度再現するかに重点が置かれていまし た.しかし、この方法によって得られる構造モデルは 単位格子であるため局所構造の定量的な評価ができま せんでした(すなわち、各元素の変位ヒストグラム解 析などの特徴量). PDF解析という用語と一緒に使わ れることが多い全散乱解析は、PDF だけでなく構造因 子S(O)の取り扱いも対象としています。図1に示す のは全散乱解析とPDF解析の関係性であり、PDF解析 は全散乱解析の一部だということがわかります. 全散 乱解析はPDF解析ではうまく扱うことができない定 量的な局所構造に関する情報を得ることができます.

上述のような材料群の開発へ世界中が加熱する中 で、ラボ装置を使った全散乱強度の測定からの局所構 造解析のニーズは高まっており、さらに手軽に全散乱 解析を実施できることが求められています。別なリガ クジャーナルで報告⁽¹¹⁾したように、Agターゲットと 高エネルギー対応の検出器を搭載したSmartLabに よって放射光と同等の全散乱データを取得することが できるようになりました(図2)⁽¹¹⁾.さらに測定・解析 統合環境SmartLab Studio II (SLSII)へR. L. Mcgreevy とL. Puzaiらによって報告された Reverse Monte Carlo RMC法⁽¹²⁾を改良した RMCオプションが搭載されまし た. この RMCオプションを使うことによって,結晶 中の局所構造を容易に測定・評価することができるよ うになりました.また,これまで「PDF プラグイン」 と呼ばれていた解析機能を「全散乱解析プラグイン (TXS)」と名称を変更しました.これは上記のように PDF 解析は全散乱解析の一部である,という解釈に合 わせたものです.

本稿では、全散乱解析プラグインの基本的な機能や 特徴を実際の解析事例を交えながらご紹介いたします.

2. TXS プラグインの特徴

TXS プラグインは、従来のPDF プラグインのPDF 計算機能を引き継ぎ、さらに RMC 法による構造モデ リング機能が追加されました.全散乱解析プラグイン の機能は主に次の3つの機能『①PDF計算機能, ②RMC 法による構造モデリング機能,③得られた構 造モデルからの特徴量抽出機能』に大別できます.

2.1. 全散乱データからのPDFの算出

従来のPDFプラグインの機能に相当する部分です. 全散乱データの読み込みから強度補正,構造因子 *S(Q)*, PDF *G(r)*を算出することができます(図3).ま た,リガク独自のデータ補正機能として,*G(r)*の短 距離側に現れる構造に無関係なピークを除去する機能 が実装されています.また,この補正法を応用するこ とで材料の数密度を推定することができます⁽¹³⁾⁻⁽¹⁵⁾. 密度推定機能は SLSII v5.0 でリリース予定です. PDF 解析の基礎部分は参考文献11 で詳細に解説している ので参照してください.

2.2. RMCオプション すでに述べた通りSLSIIのRMCオプションはRMC

,全散乱解析 ————————————————————	
, 解析対象データ: <i>S</i> (<i>Q</i>), <i>G</i> (<i>r</i>)	PDF解析 G(r)やR(r)に特化した解析
主たる目的:構造モデル推定、構造特徴量※の抽出	解析対象データ: G(r), R(r)
 BMC法による実測 S(0)、 全相関 G(r)を再現する構造探査 	主たる目的: 全相関を使った解析
	 配位数計算
※構造特徴量とは?	・ PDFguiやPDFFITによる
原子座標、 <mark>部分相関</mark> (g _{ij} (r), S _{ij} (Q))、角度ヒストグラム、	G(r)計算
価数別の情報の分離、角度距離分布関数など	

図1. 全散乱解析とPDF解析の関係性.

図2. SmartLab(赤実線)と放射光施設(黒点)で測定したSiO,ガ ラスのS(O)の比較.

図3. PDF計算中のプラグイン画面の一例.

図4. RMCオプション実行時の画面例.

法による構造モデリング機能です. SLSIIのRMCオプ ションの特徴は以下4つです.

- 1. 測定したデータの解析から RMC 法を使った構造 モデリングまでフローバー上で実施可能(図4)
- 2. *S*(*Q*)と*G*(*r*)を使った構造モデリングを容易に切 り替え可能(図5)
- 3. 欠陥構造を含む初期配置の生成とRMC法の計算 を容易に実行可能
- 4. 入門者から専門家まで幅広いユーザー層にも使 いやすい設計(図6)

特に測定したデータの解析からRMC法による構造モ デリングまでを同一のフローバーで実施できることは. ユーザーにとって煩雑な解析ソフトの切替といった作 業を省略できます.さらに、SLSIIのRMCオプションで

G(r)を選択

パッティング開数:	Gr	\mathbf{v}
フィッティングの重み:	200	$\hat{\boldsymbol{\boldsymbol{\circ}}}$
フィッティング間値:	12	0
微細構造:		
□ スケールを積密化		

フィッティングの重み 救紀構造 □ スケールを積密イ □ ブラッグピークを使意

S(Q)を選択

図5. RMCオプションの設定画面 左: G(r)を使った精密化. 右:S(O)を使った精密化.

操作	
生成	
計算	
ダウンロード	
残差プロットを表示	
7IJ7	
如期標準	
CO AT DE LE	
● CIFファイル: a-qu	Jartz.cif インポート
○ 材料:	
基本パラメーター	
r軸の最大値 (Å):	10.0 🗘
試行の最大移動量 (Å):	0.20 🗘
サイクル数:	20000
積密化	
フィッティング関数:	Sq
フィッティングの重み:	2000 🗘
フィッティング閾値:	5 💭
微細構造:	Amorphous 🗸
□ スケールを椿密化	
□ ブラッグピークを使用	

図6. RMCオプションの計算条件入力画面.

は、RMCProfileなどといったソフトウェアと比較して ユーザーが入力するパラメーター数を少なくしていま す. これにより初心者でもRMC法を使った構造モデリ ングの結果を得やすくなり、簡単に局所構造を評価す ることができることにつながります. そして結晶性材料 の局所構造のモデリングにはリガク独自の方法を採用 しています⁽¹⁶⁾.結晶性材料のRMC法の計算方法の詳細 は参考文献14,17を参考していただければと思います.

2.3. 構造モデルからの特徴量の抽出

リガクの新しい全散乱プラグインでは、RMC法に よる構造モデリングだけではなく、さらに、得られた 構造モデルを解析するためのツールも備えています. 推定された構造モデルから5つの構造特徴量『①部分 相関。②縮退モデル、③重心位置、④密度分布の Volume データと⑤各元素における③で算出した重心 位置からの変位ヒストグラム」を得ることが可能で す、これらの機能を使うことにより、得られた構造モ デルを定量的に扱うことができます.

3. 解析例

ここではRMC法で推定したα-石英の構造モデルか ら算出される特徴量をご紹介いたします. 図7は、実

図7. a-石英の実測(黒実線)と計算(赤実線)の構造因子の比較と残差プロット(緑実線)とRMC法で推定したa-石英の構造モデル図.

図8. 重み付き部分構造因子と実測値の構造因子の比較.

図9. 重み付き部分2体分布関数と実測値の比較.

測と計算の構造因子S(Q)の比較とRMC法で推定した 構造モデル図です.(構造モデル図の表示は*VESTA*⁽¹⁸⁾ を使用しています.)一致度を示すR因子 R_p =3.0%で あり,実測値をよく再現した構造モデルを推定できて います.実測値のhigh-Q側に現れるフリンジはSi-O とO-O相関の和と一致しており, α -石英構造内に SiO₄四面体構造が維持されていることを示唆していま す(図8).もちろん部分相関は,構造因子だけでなく 2体分布関数でも出力されますので,従来のように実 測値から計算したG(r)のピークがどの相関であるか を特徴付けることもできます(図9).RMC法で推定し た大規模な構造モデルから単位格子サイズへと縮退さ

図10. 図7に示した構造モデルを単位格子サイズに縮退させた 構造モデル図(赤:O,青:Si).各原子は半径0.5 Åの球 で示しています.

図11. RMCで推定した構造モデルから計算した各サイトの重 心位置と密度分布のVolumeデータ. Si-O間距離2Å未 満を結合として表記しています.

せた構造モデル(図10)から計算した重心位置と密度 分布のVolumeデータを図11に,各サイトの平均変位 と標準偏差を表1に示します.Siの変位量は小さく球 形な密度分布となっていますが,Oの変位量は大き く,ラグビーボール状の密度分布となっていることが わかります. 表1. RMC後の縮退構造モデルと重心座標から求めた各サイトの平均変位量δrと標準偏差σ サイト名は図4内の各サイトと同一です.

平均変位 Δr(Å)	標準偏差 $\sigma(Å)$
0.061	0.130
0.053	0.101
0.042	0.092
0.108	0.204
0.123	0.184
0.104	0.145
0.111	0.157
0.114	0.179
0.114	0.171
	平均変位 Δr (Å) 0.061 0.053 0.042 0.108 0.123 0.104 0.111 0.114 0.114

4. 終わりに

新しくなったTXSプラグインについて紹介してき ました.本稿で紹介できなかった解析例は,参考文献 13,14,17,19に詳細に書かれているので参照くださ い.

今後,TXSプラグインに全散乱データから算出する 材料の密度推定法やRMC法で推定した構造モデルか ら各原子の平均構造からの変位ヒストグラムや角度ヒ ストグラムを計算する機能を実装予定です.

参考文献

- (1) K. Ishidzu, Y. Oka and T. Nakamura: *Solid State Ionics*, 288 (2016), 176–179. https://doi.org/10.1016/j.ssi.2016.01.009.
- (2) T. Ohnuma and T. Kobayashi: *RSC Adv.*, **9** (2019), 35655–35661. https://doi.org/10.1039/C9RA03606G.
- (3) J. G. Smith and D. J. Siegel: *Nat. Commun.*, **11** (2020), 1483. https://doi.org/10.1038/s41467-020-15245-5.
- (4) T. Scholz, C. Schneider, M. W. Terban, Z. Deng, R. Eger, M. Etter, R. E. Dinnebier, P. Canepa, B. V. Lotsch: ACS Energy Lett., 7 (2022), 1403–1411. https://doi.org/10.1021/acsenergylett.1c02815.

- (5) H. Yamada, K. Ohara, S. Hiroi, A. Sakuda, K. Ikeda, T. Ohkubo, K. Nakada, H. Tsukasaki, H. Nakajima, L. Temleitner, L. Pusztai, S. Ariga, A. Matsuo, J. Ding, T. Nakano, T. Kimura, R. Kobayashi, T. Usuki, S. Tahara, K. Amezawa, Y. Tateyama, S. Mori and A. Hayashi: *Energy. Environ, Mater.*, (2023), e12612. https://doi.org/10.1002/eem2.12612.T.-C.
- (6) I. Umegaki, S. Kawauchi, H. Sawada, H. Nozaki, Y. Higuchi, K. Miwa, Y. Kondo, M. Månsson, M. Telling, F. C. Coomer, S. P. Cottrell, T. Sasaki, T. Kobayashi and J. Sugiyama: *Phys. Chem. Chem. Phys.*, **19** (2017), 19058–19066. https://doi.org/10.1039/C7CP02047C.
- J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi,
 Z. Chen and D. Bresser: *Sustainable Energy Fuels.*,
 4 (2020), 5387–5416. https://doi.org/10.1039/ D0SE00175A.
- (8) Huang, M.-T. Wang, H.-S. Sheu and W.-F. Hsieh: J. *Phys.: Condens. Matter.*, **19** (2007), 476212. https://doi.org/10.1088/0953-8984/19/47/476212.
- (9) T. Hoshina: J. Ceram. Soc. Japan, 121 (2013), 156– 161. https://doi.org/10.2109/jcersj2.121.156.
- (10) Y. Yoneda, S. Kim, S. Mori and S. Wada: Jpn. J. Appl. Phys., 61 (2022), SN1022. https://doi.org/10.35848/1347-4065/ac835d.
- (11) Y. Shiramata and M. Yoshimoto: *Rigaku Journal*, **50** (2019), 1–8.
- (12) R. L. McGreevy, and L. Pusztai, *Molec. Sim.*, 1 (1988) 359–367. https://doi.org/10.1080/08927 028808080958.
- M. Yoshimoto and K. Omote: J. Phys. Soc. Jpn., 91 (2022), 104602. https://doi.org/10.7566/ JPSJ.91.104602.
- (14) M. Yoshimoto: *Rigaku Journal*, **53** (2022), 27–36.
- (15) 特許出願中(出願番号:2022-191309).
- (16) 特許出願中(出願番号: 2022-157711).
- (17) M. Yoshimoto and K. Omote: *Appl. Phys. Exp.*, 16 (2023), 015005. https://doi.org/10.35848/1882-0786/acb2b0.
- (18) K. Momma and F. Izumi: J. Appl. Crystallogr., 44 (2011), 1272–1276. https://doi.org/10.1107/S0021889811038970.
- M. Yoshimoto, T. Kimura, A. Sakuda, C. Hotehama, Y. Shiramata, A. Hayashi, K. Omote, *Solid State Ion.*, 401 (2023), 116361 https://doi.org/10.1016/ j.ssi.2023.116361.