

粉末X線回折法 基礎講座

第5回定量分析

葛巻 貴大*

粉末X線回折法は、様々な結晶性物質を対象とした分析法として広く利用されている。本稿では、X線回折法を用いた定量分析法のうち、RIR (Reference Intensity Ratio)法とRietveld法について、その基礎と実際の評価例を述べる。

RIR法は、回折ピークの積分強度と、データベースなどに登録されているRIR値を基に定量分析を行う.本手法では、定性分析が終わると同時に迅速な定量分析ができる.ただし、選択配向などにより、ピークの強度比がデータベースと異なる場合には、正確な定量を行うことは困難となる.

Rietveld法は、結晶構造から得られた計算パターンを実測パターンにプロファイルフィッティングすることにより、結晶構造を精密化する手法である.この時得られるスケール因子と結晶構造を用いることにより定量分析が可能となる.本手法は、選択配向を持つ試料や複雑な回折パターンを持つ試料についても、正確な定量分析ができる.また、本手法と、内部標準法、PONKCS (Partial Or No Known Crystal Structure)法、RIR法とを組み合わせることで、非晶質相の定量分析も可能である.

1. はじめに

粉末X線回折法基礎講座第4回では,「定性分析」 に関して述べた⁽¹⁾.第5回では,「定量分析」につい て説明する.

粉末X線回折法は、様々な結晶性物質を対象とした 分析法として広く利用されている.材料の特性や機能 は、結晶構造やそれらの量比に依存することが多いた め、粉末X線回折法による定量分析は、研究開発から 品質管理に至るまで広く使用されている.

粉末X線回折法における古典的な定量分析法とし て、検量線法がある。検量線法は、結晶相の含有率と X線回折強度との相関関係を利用し、定量分析を行う 手法である。一般的には、共存する他の相のピークと 重なりのない、被検相の最大のピークの積分強度を用 いて定量を行うため、誤差要因が少なく、正確な定量 が可能である。ただし、検量線法は、検量線の作成に 被検相の純物質が必要で手間がかかること、被検相の ピークに共存する他の相のピークが重なった場合、定 量誤差が大きくなることなどから、近年では使用頻度 が減少している。これに対して、標準物質が不要なス タンダードレスな定量分析法として、参照強度比 (<u>Reference Intensity Ratio</u>:以下, RIR)法⁽²⁾と Rietveld 法⁽³⁾が利用されている。本稿では、RIR法(またはRIR 定量と呼ぶ)と、Rietveld法による定量分析について述

*株式会社リガク X線機器事業部 応用技術センター

べる. なお, パターンフィッティングによる定量分析 法として, DD (Direct Derivation)法があるが, これは 文献(4),(5)に詳しく記載されているので, 参照され たい. また, 定量分析では, 取得するデータの質を高 めることが非常に重要である. あわせて, 文献(6),(7) を参照されたい.

2. RIR法について

スタンダードレスな定量法の一つであるRIR法で は、基本的には、回折ピークの積分強度と、データ ベースなどに登録されているRIR値を基に定量分析を 行う.RIR値は、対象の結晶相にコランダムを等量混 合した際の最強線同士の強度比である.通常、定量分 析では、回折ピークの積分強度を用いるが、結晶ごと に散乱因子が異なるため、回折線強度は異なる.この とき、RIR値を用いることにより、結晶相間の散乱因 子の違いを補正することができるため、定量分析が可 能になる.RIR法の式は、次式で表される

$$W_i \propto \frac{I_i^{\text{max}}}{R_i} \tag{1}$$

ここで、 W_i は分析相iの質量分率、 I_i^{\max} はピークの 強度、 R_i はRIR値である、 I_i^{\max} として、通常は最も強 度が高い回折ピーク(最強線)の積分強度を選択する が、最強線に他の相との重なりが認められる場合など は、第2,3強線を選択する、現在では、様々な物質に

	RIR	È量					?	ų.
デー	タセット:	Mix2	✓	てに反映				
	ピーク	20 (°)	積分強度 (c	Anatase	Rutil	e		
Þ	1	25.244(5)	4170(46)	✓ 101				^
	2	27.372(3)	1137(14)		110			
	3	36.019(3)	489(7)		0101			
	4	36.879(7)	224(4)	103				
	5	37.736(3)	894(8)	004				
	6	38.502(4)	271(4)	112				
	7	39.116(3)	76(2)		200			
	8	41.172(3)	242(4)		111			
	9	43.987(4)	85.8(19)		210			
	10	47.9755(16)	1249(8)	200				
	11	53.8366(18)	780(7)	105				
	12	54.2652(14)	681(7)		211			
	13	55.002(2)	790(6)	211				
	14	56.572(4)	209(4)		220			
	15	62.060(6)	128(3)	213				
	16	62.640(2)	727(5)	204	002			
	17	63.994(4)	95(2)		310			
	18	67.687(12)	3.6(10)					
	10	C0 700(2)	074(F)	1446				~
	RIR值部	定						
Ŧ	-9271	、/ 重量分率(wt	Value, Unit	Anat	ase	Rutile		
М	ix2		0	72.8(3)		27.2(3)		

図1. SmartLab Studio II を用いた RIR 定量時のピーク選択画面.

図2. 模擬試料AのRIR法による定量分析に用いた回折ピーク.

表1.	RIR 法を用い	いた各相の解析値と秤量値	直(mass%).
-----	----------	--------------	-----------

結晶相	解析值	秤量值
ルチル	33.1	33.3
アナターゼ	34.5	33.3
ペリクレース	32.4	33.3

対して、実測や計算によってRIR値は求められており、例えばICDDなどによってデータベース化されている.図1にSmartLab Studio IIを用いたRIR定量の ピーク選択画面を示す.

RIR定量の長所は、定性分析が終わると同時に迅速 な定量分析ができる点である.定性分析で選択した カードにRIR値が記載されていれば、ボタン1つで定 量可能である.ルチル(TiO₂)、アナターゼ(TiO₂)、ペ リクレース(MgO)をそれぞれ等量混合した試料(模擬 試料A)を用いた、RIR定量結果を図2と表1に示す.

模擬試料は、ピークの重なりがなく、また、選択配 向(配向)を有しない.このような試料では、正確な定 量分析が可能であることがわかる.ただし、RIR定量 では、配向などにより、ピークの強度比がデータベー スと異なる場合や、ピークの重なりが多くピークが分 離できない場合には、正確な定量を行うことが困難で ある.このような試料については、次章で示すRietveld 法による定量分析が適している.

3. Rietveld 法による定量分析

Rietveld法は,格子定数や結晶系,原子座標などか ら得られた計算パターンを,実測の回折パターンに最 小二乗法を用いてフィッティングすることにより,結 晶構造パラメーターを精密化する手法である.Smart-Lab Studio II では,次式の重み付き残差二乗和*S*(*x*)を 最小にする計算を行う.

$$S(x) = \Sigma_i \frac{1}{\sigma(y_i)^2} \left[y_i - f_i(x) \right]^2$$
⁽²⁾

ここで, y_i は測定強度, $\sigma(y_i)$ は計数統計誤差を加味 した統計的重み, f_i は計算強度である.また,計算強 度 f_i は,次式により計算される.

$$f_{i}(x) = sS_{R}(\theta_{i}) A(\theta_{i}) D(\theta_{i}) \Sigma_{k} m_{k} |F(h_{k})|^{2} P_{k} LP(\theta_{k}) G(\Delta 2\theta_{ik}) + y_{b}(2\theta_{i})$$
(3)

このとき、sはスケール因子、 $S_{R}(\theta_{i})$ は表面粗さ補 正因子、 $A(\theta_{i})$ は吸収因子、 $D(\theta_{i})$ は照射幅補正因子、 m_{k} はブラッグ反射の多重度、Fは結晶構造因子、 h_{k} は 回折指数hkl、 P_{k} は配向関数、 $LP(\theta_{k})$ はローレンツ・ 偏光因子、 $G(\Delta 2 \theta_{ik})$ はプロファイル関数、 $y_{b}(2 \theta_{i})$ は バックグラウンド強度である。被検試料に複数の結晶 相が含まれる場合には、結晶相ごとに精密化が行われ、 スケール因子やピーク位置・形状が、実測パターンと 最も近くなるように最適化される。このとき、精密化さ れたスケール因子は、それぞれの相の含有量に比例す ることから、スケール因子と結晶構造を用いることによ り、次式を用いて定量分析を行うことができる。

$$W_i = \frac{s_i Z_i M_i V_i}{\sum_j s_j Z_j M_j V_j} \tag{4}$$

ここで*W*_iは分析相*i*の質量分率,*s*はスケール因子, *Z*は単位胞中に含まれる化学式数,*M*は式量,*V*は単 位胞の体積である.なお,SmartLab Studio IIでは,式 (5)を用いて,結晶構造パラメーターをRIR値に変換 した後に定量分析に用いている.

$$R_{i} = \frac{I_{i}^{\max} Z_{c} M_{c} V_{c}}{I_{c}^{\max} Z_{i} M_{i} V_{i}}$$

$$\tag{5}$$

ここで、 R_i は分析相iのRIR値、 I_i^{max} は分析相iの最 大ピーク強度、下付きのサフィックスcはコランダム (α -Al₂O₃)の値を示している。そのため、SmartLab Studio IIでは,結晶構造がないカードについても,その *d-I*とRIR値が求められている場合には,定量分析を 行うことが可能である.

Rietveld法による定量分析は、RIR法とは異なり、複数の相が混在し回折ピークが多数重なる試料にも適用可能である.また、配向についても、March–Dollase関数⁽⁸⁾や球面調和関数⁽⁹⁾で補正可能である.配向を持つ 試料について、RIR法とRietveld法の定量結果を比較 するため、ルチル、アナターゼ、カルサイト(CaCO₃) を等量混合した試料(模擬試料B)の解析を行った.図 3に模擬試料BのRIR法による定量で計算に用いた回 折ピークを、図4にRietveld法によるプロファイル フィッティング結果を、表2にRIR法とRietveld法の 解析結果比較を示す.

配向により,カルサイトの104反射強度は高くなる ため、単一のピークを用いるRIR法では,配向を持つ 結晶相の定量誤差が大きくなる.スタンダードレスな 定量法は各結晶相の合計値が100%になるように計算 されるため、定量誤差が他の相にも及ぶ.これに対し

図3. 模擬試料BのRIR法による定量分析に用いた回折ピーク.

図4. 模擬試料BのRietveld法によるプロファイルフィッティン グ結果.

表2. 模擬試料Bを用いたRIR法とRietveld法の解析結果比較 (mass%).

結晶相	解析値 (RIR法)	解析值 (Rietveld法)	秤量值
ルチル	30.4	33.8	33.3
アナターゼ	29.7	32.5	33.3
カルサイト	39.9	33.7	33.3

て, Rietveld法では, 配向補正が可能なので, 正確な 定量分析を行うことができる. なお, 配向補正は, 配 向が既知の結晶相のみに使用するのが望ましい. 正し く測定が行われたにも関わらず, 計算パターンと実測 パターンの間の残差が大きい場合, 未同定の結晶相が 存在する, 初期構造モデルが間違っている, などの可 能性がある. 残差が残るという理由のみで配向関数を 使用すると, 正確な評価ができなくなる可能性がある ので注意されたい.

Rietveld法は、工業的にはセメント工場の品質管理 用途など、広く使用されている手法である. セメント の原料であるクリンカーには、主相として、エーライ ト、ビーライト、アルミネート、フェライトがある. これらは、複雑な回折パターンを示し、多くのピーク が重なるため、検量線法やRIR法での定量分析は困難 である. 図5にNISTクリンカー試料のRietveld法によ るプロファイルフィッティング結果を示す. 表3に Rietveld解析結果と認証値を示す.

セメント材料のような複雑な回折パターンを示す試 料についても,正確な定量分析ができていることが確 認できる.

Rietveld解析が正しく行われたかを評価するための 指標として, R_{wp} , R_p , R_e , Sが使用されることが多く, これらは次式で与えられる.

$$R_{\rm wp} = \sqrt{\frac{\sum_{i} w_i (y_i - f_i(x))}{\sum_{i} w_i y_i^2}}$$
(6)

$$R_{\rm p} = \sqrt{\frac{\sum_{i} \left| y_i - f_i(\mathbf{x}) \right|}{\sum_{i} y_i}} \tag{7}$$

$$R_{e} = \sqrt{\frac{N-P}{\sum_{i} w_{i} y_{i}^{2}}}$$
(8)

$$S = \frac{R_{\rm wp}}{R_e} \tag{9}$$

ここで, w_iは計数統計誤差を加味した統計的重み, Nは全データ点数, Pは精密化するパラメーター数を 示す.

 R_{wp} はRietveld解析における最も一般的なR因子であ り、バックグラウンド強度を含む一致度を重み付きで 示す.ただし、 R_{wp} 、 R_p は、バックグラウンド強度や回 折強度により値が変動する.そのため、 R_{wp} と統計的 に予想される理想的な R_{wp} を示す R_e とを比較するため のパラメーターとして、Sが使用される.Sはフィッ ティングの良さを示す実質的な指標として使用される ことが多く、Sの値が1に近いほど精密化が正しく行

図5. NIST 2687のRietveld法によるプロファイルフィッティン グ結果.

結晶相	解析值	認証値
エーライト	71.5	71.27±1.27
ビーライト	13.2	12.57±1.22
アルミネート	11.7	11.82 ± 1.03
フェライト	2.8	$2.81 {\pm} 0.68$
アルカナイト	0.85	$0.92 {\pm} 0.15$

表3.	NIST 2687 0	Rietveld解析結果	:と認証値	(mass%).
-----	-------------	--------------	-------	----------

表4. 解析終了後のRwnの値の目安.

試料タイプ	R_{wp} の目安(%)
通常試料	10.0-15.0程度
高バックグラウンド試料	5.0-10.0程度
低結晶性試料	7.0-13.0程度
高結晶性試料	15.0-20.0程度

われたことを示す. 表4に試料タイプごとのR_{wp}の値の目安を示す. 解析時の参照として使用されたい.

なお、Sについては、1.3より小さければ満足するべ き解析結果とみなしてよいとされている⁽¹⁰⁾.ただし、 複数の結晶相が混在する試料を対象とするRietveld法 による定量分析では、解析結果は1.3より高い値にな る場合が多い.著者らの経験では、Sの値が2.0を超 えても、残差プロファイルを確認し問題がなければ、 適切な結果が得られている場合が多い.これらの指標 は、フィッティングの程度を示す指標であるが、値が 十分に低い場合でも、解析パラメーターが物理的に不 適切な値に収束している場合がある.正確な定量分析 を行うには、R因子やSの値のみを確認するのではな く、相ごとの計算パターンと実測パターンの一致度 や、定量結果が元素分析結果と矛盾がないことなどを 確認することが重要である.

4. Rietveld 法による非晶質相の定量分析

これまでの定量分析では,主に結晶相を対象として きたが,結晶化していない物質,いわゆる非晶質相の 定量分析も可能である.非晶質相が結晶相と同じ物質 由来である場合は,結晶相由来の回折パターンと,非 晶質相由来のハローと呼ばれる幅広なパターンの積分 強度をピーク分離により算出し、その比を用いること により、両者の量比を算出することが可能である.た だし、非晶質相が結晶相と異なる物質由来である場合 は、ピーク分離だけでは非晶質相の定量的な評価は困 難である.

そのような試料の場合,Rietveld法と,各種手法を 組み合わせることにより,非晶質相の定量分析を行う ことができる.SmartLab Studio IIには,内部標準法⁽¹¹⁾, PONKCS (Partial Or No Known Crystal structure)法⁽¹²⁾, RIR法が実装されている.これらの手法を,以下では内 部標準/Rietveld法,PONKCS/Rietveld法,RIR/Rietveld 法と呼ぶ.内部標準/Rietveld法では,被検試料に混合 した内部標準物質の添加量と解析結果の差から,間接 的に非晶質相の含有量を算出する.これに対して, PONKCS/Rietveld法とRIR/Rietveld法では,非晶質相 由来の回折パターンに,それぞれ仮想的な結晶構造や RIR値を設定することで,非晶質相の含有量を直接定 量することができる.本章では,これらの原理と評価 事例について述べる.

4.1. 内部標準/Rietveld法を用いた非晶質定量

内部標準/Rietveld法では、結晶性が高い物質を内部 標準として被検試料に既知量を添加・混合し、内部標 準物質を含んだ混合物の測定データをRietveld法にて 解析する.このとき得られる内部標準物質の定量値 は、非晶質相の量を無視して得られるものなので、試 料に非晶質相が含まれる場合には、実際に添加した量 よりも高めに算出される.この高めに算出された分 が、非晶質相の影響であると考え、下記の式を用いる ことで非晶質相の含有率を間接的に算出する.

$$C_{i} = \frac{X_{i} \times 100}{C_{\text{STD}}^{\prime}} \times C_{\text{STD}}$$
(10)

$$C_A = 100 - C_{\rm STD} - \Sigma C_i' \tag{11}$$

式(10)と式(11)より,非晶質濃度*C*_Aは非晶質相を含 む残分の濃度(mass%)として計算される.ここで*C*_{STD}は 添加した内部標準物質の濃度(mass%),*C*_{STD}はRietveld 法により得られた内部標準物質の定量値(mass%),*C*_iは 内部標準法により求めた結晶相*i*の定量値(mass%)で ある.内部標準物質は、常温・常圧下で安定であり、 被検試料を構成する結晶相には含有せず、被検試料と 内部標準物質の吸収係数の値が近く、混合による変質 がない物質が用いられることが多い.例えば、セメン ト材料に添加する内部標準物質として、コランダムが 用いられることが多い⁽¹³⁾.内部標準物質の添加濃度 は様々であるが、10から20 mass%程度が添加されて いる⁽¹⁴⁾.ルチルとシリカの等量混合試料に、非晶質シ リカを60.0 mass%混合した試料(模擬試料C)を用い、

図6. 模擬試料CのRietveld法によるフィッティング結果.

表5. 模擬試料Cを用いた内部標準/Rietveld法による各相の解 析値と秤量値(mass%).

結晶相	解析值	秤量值
ルチル	20.2	20.0
アナターゼ	19.9	20.0
非晶質シリカ	59.9	60.0

内部標準/Rietveld法による非晶質定量を行った(図6, 表5). なお,模擬試料Cには,内部標準物質としてコ ランダムを10.0 mass%になるように添加した.

本手法は、古典的に使用されてきたが、前述の通り、 内部標準物質を被検試料に混合する必要があるため、 調製が煩雑となる。そのため、近年では、非晶質相の 定量法として、次章で説明するスタンダードレスな手 法である、PONKCS/Rietveld 法や RIR/Rietveld 法が使 用される場合が多い.

5. PONKCS/Rietveld 法を用いた非晶質定量

スタンダードレスな非晶質定量法である PONKCS/ Rietveld法では、Rietveld法による定量分析時に、ハ ローに仮想的な結晶構造を設定することにより、非晶 質相の定量分析を行うことができる.この時設定する 結晶構造は、単位胞中に含まれる化学式数Z,式量M, 単位胞の体積Vの3点である.

本手法の解析では、まず、非晶質相100%の単物質 を測定して実測パターンを得る.次に、得られた実測 パターンに仮想的な格子定数を設定し、Pawley⁽¹⁵⁾法 などによりプロファイルフィッティングを行い、Vを算 出する.最後に、非晶質相量が既知の混合試料の実測 データについて、Vを設定した非晶質相の構造モデル を用いてプロファイルフィッティングを行い、ZMの値 を決定する.

本手法は、一度非晶質相に仮の結晶構造を設定でき れば、同一の非晶質相を持つ試料の評価も可能である ため、被検試料の迅速な評価が可能である.混合試料 Cに加え、ルチルとアナターゼの等量混合試料に非晶 質シリカを40.0 mass%(模擬試料D)、50.0 mass%(模擬 試料E)になるように混合した試料を用い、PONKCS/

図7. 模擬試料CのPONKCS/Rietveld法によるフィッティング 結果.

表6. 模擬試料C, D, Eを用いた, PONKCS/Rietveld法による非 晶質定量結果(mass%).

非晶質シリカ含有率	解析值
40.0	40.3
50.0	50.3
60.0	59.6

Rietveld法による非晶質定量を行った(図7,表6).

なお、解析にはSmartLab Studio IIのテンプレート機 能を用いた.Rietveld解析では、得られる定量値は解 析条件に依存するため、同じ測定データでも解析の仕 方によって定量結果が異なることが多い.テンプレー ト機能を用いることで、同じ初期値および条件で解析 を行うことができ、各試料の非晶質シリカの秤量値と Rietveld解析による定量値は非常によく一致した.

5.1. RIR/Rietveld 法を用いた非晶質定量

PONKCS/Rietveld法とは異なり, RIR/Rietveld法では, 非晶質相にRIR値を設定することにより, 非晶質 定量を行う.

$$W_A = \frac{S_A / R_A}{\sum S_j / R_j} \tag{12}$$

 W_A は非晶質の質量分率, S_A はRietveld解析により求めたスケール因子, R_A は非晶質相のRIR値である.本 手法では、PONKCS/Rietveld法と同様に、非晶質相量が既知の混合試料を用いて、実験的に非晶質相のRIR 値を決定する.一度非晶質相のRIR値を決めれば、被 検試料の正確かつ迅速な評価が可能である.

なお,本手法の実際の評価例については,文献(16), (17)を参照されたい.

6. おわりに

以上,粉末X線回折法基礎講座第5回では,「定量 分析」を行うための手法と実際の評価事例について説 明した.Rietveld法による定量分析では,配向を補正 可能で,ピーク分離が不可能なほどピークが近接して いても定量値を算出できる.また,試料の特性に影響 を与えることが多い非晶質相の含有量を迅速に定量す ることが可能になった.正しく定量分析を行うには, 質の高い測定データを取得する必要がある.また,定 性分析が正しく行われていないと,その後の定量分析 の結果も正しくないことになる.本稿とともに,第2 回「装置構成の選択」,第3回「試料調製およびスキャ ン条件」,第4回「定性分析」の内容を合わせて確認 されたい.

参考文献

- (1) 笠利実希:リガクジャーナル, 52, No. 2, (2021), 20-25.
- (2) F. H. Chung and R. W. Scott: J. Appl. Cryst., 6(1973), 225–230.
- (3) H. M. Rietveld : J. Appl. Cryst., 2 (1969), 65–71.
- (4) 虎谷秀穂:リガクジャーナル, 48, No. 2, (2017), 12-18.
- (5) 虎谷秀穂:リガクジャーナル, 50, No. 2, (2019), 29-36.
- (6) 大森雅志:リガクジャーナル, 51, No. 1, (2020),

18-25.

- (7) 大森雅志:リガクジャーナル, **52**, No. 1 (2021), 12-16.
- (8) W. A. Dollase: J. Appl. Cryst., **19** (1986), 267–272.
- (9) M. Järvinen: J. Appl. Cryst., **26** (1993), 525–531.
- (10) R. A. Young: *The Rietveld Method*. ed. By R. A. Young, Oxford Univ. Press, Oxford (1993), Chap. 1.
- (11) R. C. Jones, C. J. Babcock and W. B. Knowlton: Soil Sci. Soc. Am. J., 64 (2000), 1100–1108.
- (12) N. V. Y. Scarlett, I. C. Madsen: *Powder Diffr.*, 21 (2006), 278–284.
- (13) 佐川孝広,名和豊春:セメント・コンクリート 論文集,68(1),2014,46-52.
- (14) 大渕敦司,山田康治郎,朝倉秀夫,戸松一郎, 村田 守:耐火物, 66 (2014), 547-552.
- (15) G. S. Pawley: J. Appl. Cryst., 14 (1981), 357–361.
- (16) 大渕敦司, 葛巻貴大, 中村利廣:分析化学, **68** (2019), 609-614.
- (17) 葛巻貴大,大渕敦司,笠利実希,小澤哲也:リ ガクジャーナル, 53, No. 1, (2022), 13-19.